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Parabolik tənlik məsələlərinin həlli üçün sonlu fərqlər üsulu 
 

Xülasə 

 

Sonlu fərqlər üsulu, parabolik tənliklərin ədədi həlli üçün geniş tətbiq olunan üsullardan biridir. 

Bu yanaşmada diferensial tənliklər diskretləşdirilərək sonlu fərq tənliklərinə çevrilir. Açıq, qeyri-açıq 

və Crank-Nicholson sxemləri müxtəlif stabillik və yaxınlaşma xüsusiyyətlərinə malikdir. Hesablama 

prosesində Courant-Friedrichs-Lewy (CFL) şərti sabitliyi təmin etmək üçün əsas faktorlardan biridir. 

Düzgün zaman və məkan addımları seçilmədikdə, həll qeyri-sabit ola bilər. Bu üsul, istilikkeçirmə, 

diffuziya və digər riyazi modellərdə effektiv tətbiq olunur.  
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The Finite Difference Method for Solving Boundary Value  

Problems of Parabolic Equations  
 

Abstract 

 

The finite difference method is one of the widely applied numerical techniques for solving 

parabolic equations. In this approach, differential equations are discretized and transformed into finite 

difference equations. Explicit, implicit, and Crank-Nicholson schemes exhibit different stability and 

convergence properties. During the computation process, the Courant-Friedrichs-Lewy (CFL) 

condition is a key factor in ensuring stability. If the time and spatial steps are not chosen correctly, 

the solution may become unstable. This method is effectively used in mathematical models of heat 

conduction, diffusion, and other physical processes. 

Keywords: finite difference method, differential equations, explicit and implicit schemes, 

convergence, stability, Courant-Friedrichs-Lewy (CFL) condition  

 

Giriş 

 

Ümumiyyətlə, riyazi fizika məsələlərində və xüsusən istilik keçiriciliyi məsələlərində, 1-ci növ 

sərhəd şərtləri hesablama sahəsinin sərhədindəki nöqtələrdə dəqiq olaraq yaxınlaşdırılır və bu fakt, 

bütün hesablanmış sahədə approksimasiya qaydasına heç bir təsir etmir. Bunu 2-ci və 3-cü növ sərhəd 

şərtlərinin approksimasiya haqqında demək olmaz, çünki bu şərtlərdə axtarılan funksiyanın məkan 

dəyişəni üzrə birinci dərəcəli törəməsi mövcuddur, bunun nəticəsində sərhəd nöqtələrində 

appraksimasiya sırası hesablamaların daxili nöqtələrindəki approksimasiya sırasından aşağı ola bilər 

(Bahvalov, Židkov, Kobelʹkov, 2007). Bu məqalədə parabolik tipli xüsusi törəməli diferensial 

tənliklərin ədədi həlli üçün sonlu fərqlər üsuluna əsaslanan üsullar araşdırılır. Məqsəd, bu üsulların 

əsas prinsiplərini və tətbiq imkanlarını təhlil etmək, xüsusilə sərhəd şərtlərində törəmələr olan istilik 

keçiriciliyi məsələləri üçün bircins və konservativ sxemlərin qurulmasını, aşkar və qeyri-aşkar fərq 
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sxemlərinin sabitliyini və yaxınlaşma xüsusiyyətlərini qiymətləndirməkdir (Berezin, Židkov, 1960). 

Tədqiqat çərçivəsində həmçinin Krank-Nikolson sxemi, N.N. Yanenkonun kəsr addımlar üsulu və 

V.F. Formalevin ekstrapolyasiya ilə alternativ istiqamətlər üsulu da nəzərdən keçirilir. Bu işin 

predmeti – parabolik tip xüsusi törəməli diferensial tənliklərin həlli üçün ədədi yanaşmaların 

öyrənilməsidir (Danko, Popov, Koževnikova, 1997). 

Tədqiqat 

Məsələnin qoyuluşu və riyazi həlli  

Daxili qovşaqlarda diferensial tənliyi yaxınlaşdırmaqla, yəni bircins təxmini sonlu fərqlər sxemini 

əldə etməklə 2-ci və 3-cü növ sərhəd şərtləri ilə sərhədlərdə verilmiş approksimasiya qaydasının 

qorunması metodologiyasını nəzərdən keçirək. İstilik keçiriciliyi tənliyi üçün üçüncü başlanğıc 

sərhəd məsələsi nəzərdən keçirilir (Demidovič, Maron, 1966):  

∂𝑢

∂𝑡
= 𝑎2

∂2𝑢

∂𝑥2
+ 𝑏

∂𝑢

∂𝑥
+ 𝑐𝑢, 0 < 𝑥 < 𝑙, 𝑡 > 0; (2.54) 

𝛼
∂𝑢(0, 𝑡)

∂𝑥
+ 𝛽𝑢(0, 𝑡) = 𝜑0(𝑡), 𝑥 = 0, 𝑡 > 0; (2.55) 

𝛾
∂𝑢(𝑙, 𝑡)

∂𝑥
+ 𝛿𝑢(𝑙, 𝑡) = 𝜑1(𝑡), 𝑥 = 𝑙, 𝑡 > 0; (2.56) 

𝑢(𝑥, 0) = 𝜓(𝑥), 𝑡 = 0. (2.57) 

Sonlu fərqlər şəbəkəsinin (2.2) daxili qovşaqlarında (2.54) tənliyi üçün qapalı sonlu fərqlər sxemi 

aşağıdakı kimidir 

 

. (2.58)
 

 

Əgər sərhəd şərtlərində (2.55) və (2.56) birinci dərəcəli törəmələri aşağıdakı sxemlə (sağ və sol 

tərəflərdə sonlu fərqlər nisbəti ilə) yaxınlaşdırsaq (Kabdykajyr, 2005): 

 

; 

. 

onda sərhəd şərtləri birinci sıraya approksimasiya edilir və qlobal dərəcə birinci sıraya bərabərdir. 

Sərhəd qovşaqlarında approksimasiya sırasını ikiyə bərabər saxlamaq üçün biz x = 0 yaxınlığındakı 

-in qiymətini üçüncü törəmə daxil olmaqla x dəyişəni üçün Teylor seriyasına parçalayırıq və 

 - x = l nöqtəsinə yaxın oxşar sıra əldə edirik (sərhəd qovşaqlarında  funksiyasının zaman 

və ikinci x-də birinci törəmələri olduğunu fərz etsək): 

 

, (2.59)

 

. (2.60)

 

 

Diferensial tənlikdən (2.54) alınan sərhəd qovşaqlarında ikinci törəmə qiymətlərini burada əvəz 

edək (Kireev, Panteleev, 2006): 
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, 

və (2.59), (2.60) ifadələrindən  sırası ilə sərhəd qovşaqlarında birinci  

törəməsinin qiymətlərini tapırıq: 

 

, 

. 

 

-nu (2.55) və -ni (2.56)-da əvəz edərək və müvafiq sərhəd qovşaqlarında ( 

 

,  üçün) əldə edilmiş əlaqələri təqribi 

hesablayaraq, hər birində iki naməlum  olan sərhəd qovşaqları üçün cəbri tənliklər əldə edirik: 

 

, ; (2.61)
 

, ; ; 

; 

, ; (2.62)
 

, ; ; 

 
Beləliklə, (2.61) 3-cü növ (2.55) sərhəd şərtinin x = 0 sol sərhədində sonlu fərq approksimasiyadır  

və (2.62) diferensial tənliyin (2.54) sonlu fərq approksimasiyasında (2.58) olduğu kimi eyni 

yaxınlaşma ardıcıllığını qoruyan x = l sağ sərhədində üçüncü növ (2.56) sərhəd şərtinin sonlu fərq 

yaxınlaşmasıdır (Košlâkov, Gliner, Smirnov, 1962). 

Sərhəd sonlu fərq tənlikləri (2.61), (2.62) şəbəkə funksiyasının iki qiymətinin hər birinə təyin 

edildikdə, cəbri tənliklər (2.58) aşağıdakı kimi yazılır: 

 

, ; (2.63)
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Üç diaqonalı matrislə olan xətti tənliklər sistemini (XTS) alacağıq, bunu irəliləmə 

(proqnozlaşdırma) üsulu ilə həll edəcəyik ( ; ) 

; (2.64)
 

, ; 

. , (2.65) 

 

Sonlu fərqlərlə aparılan approksimasiya zamanı məsələnin diferensial əlaqələrinin (2.54)–(2.57) 

əsasında qurulduğu qorunma qanunları təmin olunur. Bunun üçün əvvəlcə 𝑏=𝑐=0 b=c=0 olduqda 

istilik keçiriciliyi diferensial tənliyinin (2.54) çıxarılmasını nəzərdən keçirək (şəkil 2.3 a). 

 

 
Şəkil 2.3.Konservasiyanın qorunması yolu ilə törəmələri əhatə edən sərhəd şərtlərinin 

approksimasiyası  

Enerjinin saxlanması qanununa görə, bu istilik axınlarının cəmi bu elementdə  enerji 

dəyişikliyinə bərabərdir ki, bu da elementin kütləsi -nin birinci dərəcəli törəməsinə, materialın 

istilik tutumuna c və zamana görə u(x,t) temperaturuna mütənasibdir (Plis, Slivina, 1994). 

 

 

Bu tənliyi -ə bölmək və - həddinə keçməklə bir ölçülü istilik keçiriciliyi tənliyini əldə 

edirik. 

, . 

Beləliklə, diferensial tənliyin (2.54) sonlu fərq yaxınlaşması həm istilik axınlarını, həm də  

elementinin udduğu enerjini, yəni (2.58) diferensial tənliyinin alınmasında iştirak edən bütün enerji 

növlərini nəzərə alır (Rihtmajer, 1960). 

 

Nəticə 

 

Riyazi fizikanın istilik keçiriciliyi, diffuziya, mayelərin hərəkəti, akustika, elektromaqnetizm, 

dalğa mexanikası, şüa enerjisinin ötürülməsi və elastik vibrasiya kimi müxtəlif sahələrində yaranan 

sərhəd məsələlərinin analitik həlli yalnız bəzi xüsusi hallarda mümkündür. Buna görə də tətbiqi 

məsələlərin ədədi üsullarla həlli daim elmi tədqiqatların diqqət mərkəzində olmuşdur. 

Müasir dövrdə kompüter texnologiyalarının sürətli inkişafı nəticəsində, hətta analitik yolla həll 

edilə bilən məsələlər belə, ədədi üsullarla daha səmərəli və sürətli şəkildə həll olunur. Bu iş 
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çərçivəsində parabolik tipli qismən diferensial tənliklərin həlli üçün sonlu fərq üsullarına əsaslanan 

müxtəlif metodlar araşdırılmışdır.  

Aparılmış tədqiqatın nəticəsi olaraq, bu üsulların sabitlik, yaxınlaşma və dəqiqlik baxımından 

üstünlükləri qiymətləndirilmiş və onların tətbiq sahələri müəyyənləşdirilmişdir. Xüsusilə Krank-

Nikolson sxemi və dəyişən istiqamətlər metodu sabitlik və dəqiqlik baxımından effektiv yanaşma 

kimi seçilmişdir.  
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